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ABSTRACT

This technical report outlines our approach to the Semi-
supervised Acoustic Scene Classification task in the IEEE
ICME 2024 Grand Challenge. We developed a back-
bone model using a convolutional recurrent neural network
(CRNN). Our training strategy consists of two stages: pre-
training and fine-tuning. Initially, we pre-trained the model
using the labeled dataset. In the fine-tuning stage, we utilized
the pre-trained model to assign pseudo-labels to the unlabeled
data. Samples with predicted peak probabilities higher than
a predefined threshold were deemed reliable and combined
with the labeled data. This enlarged dataset was then used
for fine-tuning the model. Our experimental results demon-
strate a significant improvement in performance compared to
the baseline method.

Index Terms— Acoustic scene classification, semi-
supervised, convolutional recurrent neural network, pseudo
label

1. INTRODUCTION

Acoustic Scene Classification (ASC) refers to the task of
automatically classifying an acoustic environment or sound-
scape based on the audio signals it produces [1]. Acoustic
scene sounds contain a wealth of information and rich con-
tent. However, for ASC, the relevant information may be
sparse and scattered throughout an audio clip, making accu-
rate scene prediction challenging. As a result, ASC has been a
longstanding and appealing research field for decades. ASC is
an important area of research in audio signal processing, ma-
chine learning, and artificial intelligence, with applications in
various fields including surveillance, environmental monitor-
ing, multimedia content analysis, and smart devices.

The goal is to identify and label the category of a given
acoustic scene, such as bus, restaurant, or park, etc. In the cur-
rent task, each piece of data belongs to one of ten categories,
with no instances having multiple labels [2]. Only 20% of the
data is labeled, presenting a challenge for participants to uti-
lize semi-supervised and domain adaptation methods to tackle
this issue.

We described our submitted system for this task. Accord-
ing to [2], the baseline model, pretrained on the TAU Urban
Acoustic Scenes 2020 Mobile development dataset, achieved
only 14% accuracy on the Chinese acoustic scene dataset.
This indicates a significant domain-shift between the two
datasets. Therefore, we decided not to consider using exter-
nal datasets for pre-training or domain-adaptation in this task.
Instead, we focused on leveraging semi-supervised learning
techniques to make full use of the unlabeled subset within this
development set. Specifically, we designed a model based on
convolutional recurrent neural network (CRNN). By adding
pseudo-labels to the unlabeled subset, we expanded the avail-
able dataset for model training.

The subsequent sections detail our model architecture,
training methods, and validation experiments. We partitioned
the development set into training and validation sets to con-
firm the effectiveness of the proposed method. The exper-
imental results demonstrate that the proposed systems can
achieve state-of-the-art performance for ASC.

2. METHOD

In this study, inspired by [3], we propose a CRNN model,
as illustrated in Fig. 1. The convolutional layers capture lo-
cal receptive fields, while the Bidirectional Long Short-Term
Memory (BiLSTM) layers provide global temporal context.
By integrating their respective strengths, we aim to extract
more comprehensive features. Segment-level features are ob-
tained by averaging the frame-level embeddings generated by
the BiLSTM outputs across the temporal dimension, followed
by two fully connected layers for final output generation.

We employ log mel spectrograms as the input to our
model. The Short-Time Fourier Transform (STFT) is com-
puted using a Hanning window, with 2048 points for the Fast
Fourier Transform (FFT), a frame length of 2048, and a frame
shift of 1024. We apply 40 mel-filter bands followed by a
base-10 logarithmic operation to compute the log mel spec-
trograms. Given that each audio sample has a sampling rate
of 48 kHz and a duration of 10 seconds, the shape of each
log mel spectrogram is 1 × 40 × 469, representing 1 chan-
nel, 40 frequency bins, and 469 frames. We denote a log mel
spectrogram as x.



Fig. 1. Architecture of the CRNN model.

Given a labeled training set X and an unlabeled training
set U , first, a pre-training model is trained on X , denoted as
f1(·). In the second step, samples from U are filtered us-
ing f1(·). The criterion for filtering is based on the peak
probability output by f1(·). Samples with peak probabilities
higher than a predefined threshold δ are considered reliable
and assigned pseudo-labels, while those below this threshold
are discarded. The aforementioned process can be formalized
as follows:

U = {(xn, ŷn) |
xn ∈ U ,
f1(xn) = ŷn,

max(ŷn) > δ,

ŷn = argmax
i

{ŷn,i}Ii=1}

(1)

The purpose of taking the argmax operation in Eq. (1) is
to subsequently perform one-hot encoding on ŷn during fine-
tuning. Next, merging the two datasets and fine-tuning the
model can be formalized as follows:

W = X ∪ U (2)

The loss function will use the cross-entropy, combined
with one-hot encoding. The cross entropy loss of a single
sample can be formalized as follows:

LCE = −
I∑

i=0

yi log ŷi (3)

3. EXPERIMENTS

3.1. Experimental setup

We shuffled the labeled development set X dev, setting the ran-
dom seed to 0. It was then divided into training set X tr and
validation set X val in a 9:1 ratio. The training set X tr contains
1566 samples, while the validation set X val contains 174 sam-
ples. Our objective was to find the best-performing model on
X val. During the fine-tuning stage, the training set X tr will
be merged with the filtered unlabeled set Udev

.
For all experiments, we employed the AdamW optimizer

[4] with a maximum of 100 training epochs. The batch size

Table 1. Results on the validation set.
method accuracy (%) cross-entropy

baseline 98.28 0.050

pre-train 98.85 0.035
δ = 0.90 98.85 0.029
δ = 0.95 98.85 0.017
δ = 0.99 98.85 0.036

was set to 32. The learning rate was initialized at 0.001. If
the validation loss did not decrease for 5 epochs, the learning
rate was multiplied by 0.5, with a lower bound set to 0.0001.
Training was stopped early if the validation loss on the vali-
dation set did not decrease for 20 epochs. The model with the
minimum cross-entropy loss on the validation set was chosen
for evaluation.

3.2. Results

Table 1 presents the effectiveness of our proposed method.
The baseline, trained under the training strategy outlined in
Section 3.1, achieves a accuracy of 98.28% on the validation
set, i.e. only 3 misclassified samples. Thus, in the current
work, accuracy as a criterion for model selection is not suffi-
ciently smooth, which led us to opt for using cross-entropy
loss to select model. It can be observed that incorporat-
ing pseudo-labels consistently improves model performance
compared to the pre-trained model. When δ = 0.95, the
cross-entropy loss is minimized.
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